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Introduction

Motivation
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MC statistics will
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uncertainty
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
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@ Time to generate an event dominated by hard process not shower
@ Large computational cost for unweighting at high multiplicity
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Introduction
Importance Sampling

No Importance Sampling
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Importance Sampling

No Importance Sampling
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Importance Sampling
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Goal: Choose a function ¢(z) such that % ~ 1.
@ Best is g(x) = f(x), requires analytic inverse of CDF

@ Acceptable to get close enough by fitting f(xz) to some assumed form
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Introduction

Previous Approaches

Generate From Events:
Generate Events:

@ Pros:

) @ Pros:
o Fast evaluation of .
e No events required to
events .
e Easy to train using train . .
o Under-trained — Still

existing frameworks .
correct cross-section

o Cons:
e Requires large sample
of events to train
e Under-trained —
Wrong cross-sections

o Cons:
e Requires Jacobian of
Neural Network in
inference
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Introduction
Normalizing Flows

Problem: Numerical Jacobian of Network scales like O (ng)
Goal: Develop a network architecture with analytic Jacobian.
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e Continuous
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Introduction
Normalizing Flows

Problem: Numerical Jacobian of Network scales like O (ng)
Goal: Develop a network architecture with analytic Jacobian.
Requirements:

@ Bijective
e Continuous
@ Flexible
Answer: Normalizing Flows!
@ First introduced in " Nonlinear Independent Component Estimation” (NICE)

[1410.8516]
@ More complex transformations using splines in [1s0s.03856) and [1906.04032]

@ Easy to implement using TensorFlow-Probability
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Introduction

Normalizing Flows: Basic Building Block

XA

a @@ 4 { permutation |—>

Xg —C(xg; m(xa))

(Forward Transform: . . S . )
YA =124 The C function: numerically cheap, easily invertible,
and separable.

yB,i = C(zB,;;m(za)) Jacobian:
Inverse Transform: 1 ¢ 9C (x5

Ta4 = ya |@‘ _ x4 | _ (zp;m(za))

O 0 @ o0rB
1 oxp

L zp,i = C" (yp,i;m(ya)) )
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Introduction

Normalizing Flows: Basic Building Block

XA

a @@ 4 { permutation |—>

Xg —C(xg; m(xa))

Jacobian is O (n)
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Test Functions: 4-d Camel
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Test Functions: 4-d Camel
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Target Distribution:
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Final:
loss = 2.640339e-02




Results

Results

unweighting efficiency LO QCD NLO QCD (RS)

(W) /Wmax n =0 n =1 n =2 n =3 n =4 n =0 n =1

W 4+ njets Sherpa 28107 3.8107% 75.107% 15107 83.107* | 951072 4.5.1073
NN+NF | 6.1-107* 1.2.107* 1.0-107%® 1.8.107® 89.107* | 1.6-10°" 4.1.1073
Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91

W™ +njets Sherpa 2.9-107*  4.0-107% 7.7.107%* 20-107* 9.7.107* | 1.0-107" 4.5.1073
NN+NF | 7.0-107* 1.5.107* 1.1-107%2 22.107® 7.9.107* | 1.5-107% 4.2.1073

Gain 2.4 33 1.4 1.1 0.82 1.5 0.91

Z +mnjets  Sherpa 3.1-107'  3.6:1072 1.5:1072 4.7.1073 1.2.107Y  5.3.1073
NN+NF | 3.8.107' 1.0-107' 1.4.1072 24.1073 1.8107% 5.7.1073
Gain 1.2 2.9 0.91 0.51 1.5 1.1
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Results

Conclusions

Traditional Integration
@ Numerical integration and the need for Monte Carlo

@ Current approaches not sufficient for LHC
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Results

Conclusions

Traditional Integration
@ Numerical integration and the need for Monte Carlo

@ Current approaches not sufficient for LHC

Normalizing Flows

@ Avoid computational difficulty of Jacobian

@ Using splines to approximate CDF

@ Better than Sherpa up to 3j in all but Z channel

@ Room still for further optimization

@ Limited by computational resources to train, and not by algorithm
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Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: imiiter et al. 1808.03856]

pdf cdf

\The NN predicts the pdf bin heights @Q;.
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Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: imiiter et al. 1808.03856] b—1
C = «
pdf cdf Z Qr + Qe
k=1
z—(b— 1w
a1
w
2| _ ] Qv
orp| — w
7

\The NN predicts the pdf bin heights @Q;.
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Normalizing Flows: Piecewise CDF

(Piecewise Linear CDF: [Miller et al. 1808.03856] b—1 )
C pr—
pdf cdf Z Qr + Qe
k=1
z—(b— 1w
I ()
w
aC | _ Qb,
|-%
\The NN predicts the pdf bin heights @Q;. 7 )
(Rational Quadratic CDF: [purkan et. al. 1906.04032] )
0y 4 W5 —y®)sa? + dPa(1 - o)
s(B) 4+ [d*+D) + d*) — 25(R)]a(1 — @)
L_mma® gk g
w(’“) u)(k)
\Predict widths (w(*)), heights (y(%)), and derivatives (d(¥)) of the knots of spline. )
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